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The Broué—Malle—Michel symmetrising trace conjecture

Let W be a complex reflection group, and let H(W) be the generic Hecke algebra
associated to W defined over a Laurent polynomial ring Ryy.

Let B be an Ry-basis for H(W). We have |B| = |W|.

There exists a linear map 7 : H(W) — Ry that satisfies the following conditions:

@ 7 is a symmetrising trace, that is, the matrix A := (7(b;bj)p; pcB) is
symmetric and invertible over Ry .

@ When H(W) specialises to the group algebra of W, 7 becomes the
canonical symmetrising trace given by 7(w) = 6y, for all w € W.

© 7 satisfies an extra condition, which makes it unique.

It is known to hold for:
@ the real reflection groups by Bourbaki;
@ the groups G4, Gia, Gz, Gy by Malle-Michel (G, also by Marin—Wagner).
@ the infinite series G(de, e, r) by Bremke-Malle & Malle-Mathas (7).



The idea of the algorithm



The idea of the algorithm

We have |Gy| = 24, |Gs| = 72, |Gs| = 48, |Gr| = 144, |Gs| = 96, | Gu3| = 96.



The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gis| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,,.



The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gis| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when
H(W) specialises to the group algebra of W.



The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gi3| = 96.
STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when

H(W) specialises to the group algebra of W. By construction, B, satisfies the
second condition of the BMM symmetrising trace conjecture.



The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gis| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when
H(W) specialises to the group algebra of W. By construction, B, satisfies the
second condition of the BMM symmetrising trace conjecture.

If h € H(G,), then 7(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of B5,,. J




The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G;| = 144, | Gg| = 96,

Gis| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when
H(W) specialises to the group algebra of W. By construction, B, satisfies the
second condition of the BMM symmetrising trace conjecture.

If h € H(G,), then 7(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of B5,,. J

STEP 2: Calculate the matrix A = (7(bib;)p,, beB,)-



The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gis| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when
H(W) specialises to the group algebra of W. By construction, B, satisfies the
second condition of the BMM symmetrising trace conjecture.

If h € H(G,), then 7(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of B5,,. J

STEP 2: Calculate the matrix A = (7(bib;)p bes,). Check whether A is
symmetric and invertible over Ry .



The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gis| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when
H(W) specialises to the group algebra of W. By construction, B, satisfies the
second condition of the BMM symmetrising trace conjecture.

If h € H(G,), then 7(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of B5,,. J

STEP 2: Calculate the matrix A = (7(bib;)p bes,). Check whether A is
symmetric and invertible over Ry,. If yes, then 7 satisfies the first condition of
the BMM symmetrising trace conjecture.



The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gi3| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when
H(W) specialises to the group algebra of W. By construction, B, satisfies the
second condition of the BMM symmetrising trace conjecture.

If h € H(G,), then 7(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of B5,,. J

STEP 2: Calculate the matrix A = (7(bib;)p bes,). Check whether A is
symmetric and invertible over Ry,. If yes, then 7 satisfies the first condition of
the BMM symmetrising trace conjecture.

H(G,) for n=4,...,16. However, note that not any basis will work for the proof

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for
of the BMM symmetrising trace conjecture! J




The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gi3| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when
H(W) specialises to the group algebra of W. By construction, B, satisfies the
second condition of the BMM symmetrising trace conjecture.

If h € H(G,), then 7(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of B5,,. J

STEP 2: Calculate the matrix A = (7(bib;)p bes,). Check whether A is
symmetric and invertible over Ry,. If yes, then 7 satisfies the first condition of
the BMM symmetrising trace conjecture.

H(G,) for n=4,...,16. However, note that not any basis will work for the proof

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for
of the BMM symmetrising trace conjecture! J

If not, go back to STEP 1 and modify B, accordingly.



The idea of the algorithm

We have |G4| = 24, |Gs| = 72, |Gg| = 48, |G7| = 144, |Gg| = 96,

Gi3| = 96.

STEP 1: Take a basis B, for each H(G,) and define a linear map 7 on H(G,) by
setting 7(b) := 615 for all b € B,. We must have 1 € B, and B, = W when
H(W) specialises to the group algebra of W. By construction, B, satisfies the
second condition of the BMM symmetrising trace conjecture.

If h € H(G,), then 7(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of B5,,. J

STEP 2: Calculate the matrix A = (7(bib;)p bes,). Check whether A is
symmetric and invertible over Ry,. If yes, then 7 satisfies the first condition of
the BMM symmetrising trace conjecture.

H(G,) for n=4,...,16. However, note that not any basis will work for the proof

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for
of the BMM symmetrising trace conjecture! J

If not, go back to STEP 1 and modify B, accordingly.
STEP 3: Check that the extra third condition holds.
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The C++ algorithm

For any b;, b; € B, our C++ program expresses b;b; as a linear combination of the
elements of B,. Then 7(b;b;) is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:
I1. The basis B,.

I2. The generating relations of the Hecke algebra H(G,).

[3. The “special cases”: these are some equalities computed by hand which

express a given element of H(G,) as a sum of other elements in H(G,).

The case of G4

We have B — 1,s,5%, t%, t, t%s, ts, t2s°, ts2, st?, st, st?s, sts, st>s>, sts>,
4 s2t2 s%t, s2t2s, s%ts, s2t2s?, s2ts?, ststst, stststs, stststs?
Running the C++ program takes about 1 hour on an Intel Core i5 CPU.
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The SAGE algorithm

Our SAGE program produces the matrix A row by row, using the distinctive
pattern of the basis 3,: there exists a set £, with 1 € £, such that

B,={zkele€ &, k=0,1,...,|Z(G,)| — 1},

where z € Z(H(G,)) is the image of a generator of the centre of the
corresponding braid group.

A, forn=5,6,7;
&, for n=28,13.

The curious case of Gy
3 elements have to be replaced!

The inputs of the SAGE algorithm are the coefficients of the following elements
when written as linear combinations of the elements of B,:

We have &, +» G,/Z(G,) = {

I1. gb; for all bj € By, where g runs over the generators of H(G,).

12. ZlZ(Gn)‘ =ZzZ- le(Gn)lfl_
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© H(Gs)= (s, t | stst=tsts, s>=as’+bs+c, 2=d>+et+f).

o & ={l,5,5° t,t2 st,s°t,st*, s*t? t~ts, t'st, t st} = {by, by..., b12}.
@ z = stst.

@ Bs={zkbn|m=1,2,...,12, k=0,1,...,5}.

We set biojim := z¥b,,. We observe that we have:

biokyo = biokt1 S, biokts = biakye - t,

biok+3z = biok42 -5, biokyo = brokir - t,

_ _ 1
biokta = broks1 - t, brokyio = £ (brokys — dbiokya — €bi2it1) - S,
biokys = bizkya - t, biaky1n = brokyio - t,
biok+6 = biok2 - t, bioks12 = bioky11 - t.

biok+7 = biokys -t
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The case of Gs

Let j € {1,...,72}. Using the C++ program, we have expressed sb;, tb; and
2% = b3, as linear combinations of the elements of Bs with coefficients in

Z[a, b, ctt,d, e, FH1].
Let Sbj = Z[ )‘j,éb@' tbj = Ze Aj,ébf and 28 = ZE Mgbz.

© 7(bioktab;) = T(broktathy) = 32, Af yT(brok+1be).
© 7(biakr10bj) = F71 Y0, A2 (T(brakysbr) — dT(brakyabr) — eT(brakr1br)).

We now consider the case of biox11 = z¥, for k # 0. We distinguish two cases:

e Ifl <Jj< 12(6 — k), then we have b12k+1bj € Bs, whence T(b12k+1bj) =0.

o If 12(6 — k) <j < 72, then b12k+1bj = Zkbj = Zk76bj26 = b12k+j_72 . 26.



The case of Gs

Let j € {1,...,72}. Using the C++ program, we have expressed sb;, tb; and
2% = b3, as linear combinations of the elements of Bs with coefficients in

Z[a, b, ctt,d, e, FH1].
Let Sbj = Z[ )‘j,éb@' tbj = Ze Aj,ébf and 28 = ZE Mgbz.

© 7(bioktab;) = T(broktathy) = 32, Af yT(brok+1be).
© 7(biakr10bj) = F71 Y0, A2 (T(brakysbr) — dT(brakyabr) — eT(brakr1br)).

We now consider the case of biox11 = z¥, for k # 0. We distinguish two cases:
o If1l <_j < 12(6 — k), then we have b12k+1bj € Bs, whence T(b12k+1bj) =0.
o If 12(6 - k) <j < 72, then b12k+1bj = Zkbj = Zkiébjz6 = b12k+j_72 - 25
We get

7(bioks1bj) = T(broktj—72 - 2°) = Z poeT (br2ktj—72 br).
¢
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The GAP algorithm

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle
has shown that there exists a field K over which H(W) is split semisimple. Then

D 1)

XEIrr(KH(W)) Sx
where s, € K denotes the Schur element of KH (W) associated with x.

Schur elements have been completely determined by Malle for all non-real
exceptional complex reflection groups.

STEP 1: Define 7 as the RHS of (1).
STEP 2: Establish that 7 = 7 by showing that 7(b) = 41, for all b € B,,.

STEP 3: Calculate the entries of A using 7. We already know that A is
symmetric, so we only need to calculate the entries in and above the diagonal.

Our program worked for G, and Gg. It produced A for Gg, but could not calculate
det(A). It could not even establish STEP 2 for Gs and G. J
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the extra condition of the BMM symmetrising trace conjecture translates as:

- (z‘Z<Gn>|b—1) =0 forallbeB,\ {1}. 2)

This is equivalent to

1261
3 DZTT) 61y =0 forall be By \ {1}, (3)
XEIrr(KH(G)) S

@ We used GAP to prove Formula (3) for Gy, G and Gg.

@ We directly proved Formula (2) for Gs, G; and Gi3, by expressing
7 (21#(¢)Ip=1) as a linear combination of entries of the matrix A.
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Theorem (Boura—Chavli—C.—Karvounis)

The BMM symmetrising trace conjecture holds for Gy, Gs, Gg, G7, Gs.

Theorem (Boura—Chavli-C.)

The BMM symmetrising trace conjecture holds for Gy3 (and thus for all
2-reflection groups of rank 2).

Our C++ program has expressed gb; as a linear combination of the elements of
B, for every generator g of 7(G,) and every b; € B,. This in fact allows us to
express any product of the generators, and thus any element, of H(G,) as a linear
combination of the elements of B,.



