Two fundamental conjectures on the structure of Hecke algebras Part II: The BMM

Maria Chlouveraki

Université de Versailles

(joint work with C. Boura, E. Chavli & K. Karvounis)

Let W be a complex reflection group, and let $\mathcal{H}(W)$ be the generic Hecke algebra associated to W defined over a Laurent polynomial ring R_W .

Let W be a complex reflection group, and let $\mathcal{H}(W)$ be the generic Hecke algebra associated to W defined over a Laurent polynomial ring R_W .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$.

Let W be a complex reflection group, and let $\mathcal{H}(W)$ be the generic Hecke algebra associated to W defined over a Laurent polynomial ring R_W .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. We have $|\mathcal{B}| = |W|$.

Let W be a complex reflection group, and let $\mathcal{H}(W)$ be the generic Hecke algebra associated to W defined over a Laurent polynomial ring R_W .

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. We have $|\mathcal{B}| = |W|$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

• τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .

Let W be a complex reflection group, and let $\mathcal{H}(W)$ be the generic Hecke algebra associated to W defined over a Laurent polynomial ring R_W .

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. We have $|\mathcal{B}| = |W|$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- **2** When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.

Let W be a complex reflection group, and let $\mathcal{H}(W)$ be the generic Hecke algebra associated to W defined over a Laurent polynomial ring R_W .

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. We have $|\mathcal{B}| = |W|$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- **2** When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.
- \bullet τ satisfies an extra condition, which makes it unique.

Let W be a complex reflection group, and let $\mathcal{H}(W)$ be the generic Hecke algebra associated to W defined over a Laurent polynomial ring R_W .

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. We have $|\mathcal{B}| = |W|$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

- τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- **2** When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.

 \odot τ satisfies an extra condition, which makes it unique.

It is known to hold for:

- the real reflection groups by Bourbaki;
- the groups G_4 , G_{12} , G_{22} , G_{24} by Malle–Michel (G_4 also by Marin–Wagner).
- the infinite series G(de, e, r) by Bremke–Malle & Malle–Mathas (?).

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W .

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for n = 4, ..., 16. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for n = 4, ..., 16. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify \mathcal{B}_n accordingly.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$, $|G_{13}| = 96$.

STEP 1: Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in B_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify \mathcal{B}_n accordingly.

STEP 3: Check that the extra third condition holds.

The C++ algorithm

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

The C++ algorithm

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

- 1. The basis \mathcal{B}_n .
- 12. The generating relations of the Hecke algebra $\mathcal{H}(G_n)$.
- 13. The "special cases": these are some equalities computed by hand which express a given element of $\mathcal{H}(G_n)$ as a sum of other elements in $\mathcal{H}(G_n)$.

The C++ algorithm

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

- 11. The basis \mathcal{B}_n .
- 12. The generating relations of the Hecke algebra $\mathcal{H}(G_n)$.
- 13. The "special cases": these are some equalities computed by hand which express a given element of $\mathcal{H}(G_n)$ as a sum of other elements in $\mathcal{H}(G_n)$.

The case of G_4

We have $\mathcal{B}_4 = \left\{ \begin{array}{l} 1, s, s^2, t^2, t, t^2s, ts, t^2s^2, ts^2, st^2, st, st^2s, sts, st^2s^2, sts^2, \\ s^2t^2, s^2t, s^2t^2s, s^2ts, s^2t^2s^2, s^2ts^2, ststst, stststs, stststs^2 \end{array} \right\}.$ Running the C++ program takes about 1 hour on an Intel Core i5 CPU.

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n : there exists a set \mathcal{E}_n with $1 \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \, | \, e \in \mathcal{E}_n, \, k = 0, 1, \dots, |Z(G_n)| - 1 \} \,,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $z \in Z(\mathcal{H}(G_n))$ is the image of a generator of the centre of the corresponding braid group.

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n : there exists a set \mathcal{E}_n with $1 \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \, | \, e \in \mathcal{E}_n, \, k = 0, 1, \dots, |Z(G_n)| - 1 \} \,,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where $z \in Z(\mathcal{H}(G_n))$ is the image of a generator of the centre of the corresponding braid group.

We have
$$\mathcal{E}_n \leftrightarrow \mathcal{G}_n/Z(\mathcal{G}_n) \cong \begin{cases} \mathfrak{A}_4 & \text{for } n = 5, 6, 7; \\ \mathfrak{S}_4 & \text{for } n = 8, 13. \end{cases}$$

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n : there exists a set \mathcal{E}_n with $1 \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \, | \, e \in \mathcal{E}_n, \, k = 0, 1, \dots, |Z(G_n)| - 1 \} \,,$$

<ロト <四ト <注入 <注下 <注下 <

where $z \in Z(\mathcal{H}(G_n))$ is the image of a generator of the centre of the corresponding braid group.

We have
$$\mathcal{E}_n \leftrightarrow G_n/Z(G_n) \cong \begin{cases} \mathfrak{A}_4 & \text{for } n = 5, 6, 7; \\ \mathfrak{S}_4 & \text{for } n = 8, 13. \end{cases}$$

The curious case of G_7

3 elements have to be replaced!

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n : there exists a set \mathcal{E}_n with $1 \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \, | \, e \in \mathcal{E}_n, \, k = 0, 1, \dots, |Z(G_n)| - 1 \} \,,$$

where $z \in Z(\mathcal{H}(G_n))$ is the image of a generator of the centre of the corresponding braid group.

We have
$$\mathcal{E}_n \leftrightarrow G_n/Z(G_n) \cong \begin{cases} \mathfrak{A}_4 & \text{for } n = 5, 6, 7; \\ \mathfrak{S}_4 & \text{for } n = 8, 13. \end{cases}$$

The curious case of G_7

3 elements have to be replaced!

The inputs of the SAGE algorithm are the coefficients of the following elements when written as linear combinations of the elements of \mathcal{B}_n :

11. gb_j for all $b_j \in \mathcal{B}_n$, where g runs over the generators of $\mathcal{H}(G_n)$.

12.
$$z^{|Z(G_n)|} = z \cdot z^{|Z(G_n)|-1}$$
.

• $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$.

H(*G*₅) = ⟨*s*, *t* | *stst* = *tsts*, *s*³ = *as*² + *bs* + *c*, *t*³ = *dt*² + *et* + *f*⟩. *E*₅ = {1, *s*, *s*², *t*, *t*², *st*, *s*²*t*, *st*², *s*²*t*², *t*⁻¹*s*, *t*⁻¹*st*, *t*⁻¹*st*²}

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$

• $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$. • $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$ • z = stst.

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$

- z = stst.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

• $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$. • $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$ • z = stst.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$.

• $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$. • $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$ • z = stst.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$. We observe that we have:

- *H*(*G*₅) = ⟨*s*, *t* | *stst* = *tsts*, *s*³ = *as*² + *bs* + *c*, *t*³ = *dt*² + *et* + *f*⟩. *E*₅ = {1, *s*, *s*², *t*, *t*², *st*, *s*²*t*, *st*², *s*²*t*², *t*⁻¹*s*, *t*⁻¹*st*, *t*⁻¹*st*²} = {*b*₁, *b*₂..., *b*₁₂}. *z* = *stst*.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$. We observe that we have:

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $sb_j = \sum_{\ell} \lambda_{j,\ell}^s b_\ell$, $tb_j = \sum_{\ell} \lambda_{j,\ell}^t b_\ell$ and $z^6 = \sum_{\ell} \mu_\ell b_\ell$.

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_{\ell} \lambda_{j,\ell}^s b_\ell$$
, $tb_j = \sum_{\ell} \lambda_{j,\ell}^t b_\ell$ and $z^6 = \sum_{\ell} \mu_\ell b_\ell$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{\ell} \lambda_{j,\ell}^t \tau(b_{12k+1}b_\ell).$$

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_\ell \lambda^s_{j,\ell} b_\ell$$
, $tb_j = \sum_\ell \lambda^t_{j,\ell} b_\ell$ and $z^6 = \sum_\ell \mu_\ell b_\ell$.

Examples

• $\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{\ell} \lambda_{j,\ell}^t \tau(b_{12k+1}b_\ell).$

•
$$au(b_{12k+10}b_j) = f^{-1}\sum_{\ell} \lambda_{j,\ell}^s(au(b_{12k+5}b_\ell) - d au(b_{12k+4}b_\ell) - e au(b_{12k+1}b_\ell)).$$

(日) (四) (문) (문) (문)

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_\ell \lambda_{j,\ell}^s b_\ell$$
, $tb_j = \sum_\ell \lambda_{j,\ell}^t b_\ell$ and $z^6 = \sum_\ell \mu_\ell b_\ell$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{\ell} \lambda_{j,\ell}^t \tau(b_{12k+1}b_\ell).$$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_{\ell} \lambda_{j,\ell}^s(\tau(b_{12k+5}b_\ell) - d\tau(b_{12k+4}b_\ell) - e\tau(b_{12k+1}b_\ell)).$$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_\ell \lambda^s_{j,\ell} b_\ell$$
, $tb_j = \sum_\ell \lambda^t_{j,\ell} b_\ell$ and $z^6 = \sum_\ell \mu_\ell b_\ell$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{\ell} \lambda_{j,\ell}^t \tau(b_{12k+1}b_\ell).$$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_{\ell} \lambda_{j,\ell}^s(\tau(b_{12k+5}b_\ell) - d\tau(b_{12k+4}b_\ell) - e\tau(b_{12k+1}b_\ell)).$$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

• If $1 \leq j \leq 12(6-k)$, then we have $b_{12k+1}b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1}b_j) = 0$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_\ell \lambda_{j,\ell}^s b_\ell$$
, $tb_j = \sum_\ell \lambda_{j,\ell}^t b_\ell$ and $z^6 = \sum_\ell \mu_\ell b_\ell$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{\ell} \lambda_{j,\ell}^t \tau(b_{12k+1}b_\ell).$$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_{\ell} \lambda_{j,\ell}^s(\tau(b_{12k+5}b_\ell) - d\tau(b_{12k+4}b_\ell) - e\tau(b_{12k+1}b_\ell)).$$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leq j \leq 12(6-k)$, then we have $b_{12k+1}b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1}b_j) = 0$.
- If $12(6-k) < j \leq 72$, then $b_{12k+1}b_j = z^k b_j = z^{k-6}b_j z^6 = b_{12k+j-72} \cdot z^6$.

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_\ell \lambda_{j,\ell}^s b_\ell$$
, $tb_j = \sum_\ell \lambda_{j,\ell}^t b_\ell$ and $z^6 = \sum_\ell \mu_\ell b_\ell$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{\ell} \lambda_{j,\ell}^t \tau(b_{12k+1}b_\ell).$$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_{\ell} \lambda_{j,\ell}^s(\tau(b_{12k+5}b_\ell) - d\tau(b_{12k+4}b_\ell) - e\tau(b_{12k+1}b_\ell)).$$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leq j \leq 12(6-k)$, then we have $b_{12k+1}b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1}b_j) = 0$.
- If $12(6-k) < j \le 72$, then $b_{12k+1}b_j = z^k b_j = z^{k-6}b_j z^6 = b_{12k+j-72} \cdot z^6$. We get

$$\tau(b_{12k+1}b_j) = \tau(b_{12k+j-72} \cdot z^6) = \sum_{\ell} \mu_{\ell} \tau(b_{12k+j-72} b_{\ell}).$$

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple.

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(W))} \frac{1}{s_{\chi}} \chi$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ .

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(\mathcal{W}))} \frac{1}{s_{\chi}} \chi$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(\mathcal{W}))} \frac{1}{s_{\chi}} \chi$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(\mathcal{W}))} \frac{1}{s_{\chi}} \chi$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\tilde{\tau} = \tau$ by showing that $\tilde{\tau}(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$.

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(\mathcal{W}))} \frac{1}{s_{\chi}} \chi$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\tilde{\tau} = \tau$ by showing that $\tilde{\tau}(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$.

STEP 3: Calculate the entries of A using $\tilde{\tau}$. We already know that A is symmetric, so we only need to calculate the entries in and above the diagonal.

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(\mathcal{W}))} \frac{1}{s_{\chi}} \chi$$
(1)

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\tilde{\tau} = \tau$ by showing that $\tilde{\tau}(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$.

STEP 3: Calculate the entries of A using $\tilde{\tau}$. We already know that A is symmetric, so we only need to calculate the entries in and above the diagonal.

Our program worked for G_4 and G_6 . It produced A for G_8 , but could not calculate det(A). It could not even establish STEP 2 for G_5 and G_7 .

Malle and Michel have shown that, since

() each element of \mathcal{B}_n corresponds to a distinct element of \mathcal{G}_n ,

2)
$$au(b)=\delta_{1b}$$
 for all $b\in {\mathcal B}_n$, and

3 \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z^{|Z(G_n)|}b^{-1}\right) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
(2)

Malle and Michel have shown that, since

() each element of \mathcal{B}_n corresponds to a distinct element of \mathcal{G}_n ,

2)
$$au(b)=\delta_{1b}$$
 for all $b\in {\mathcal B}_n$, and

3 \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z^{|Z(G_n)|}b^{-1}\right) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
(2)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This is equivalent to

$$\sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(\mathcal{G}_n))} \frac{\omega_{\chi}(z^{|Z(\mathcal{G}_n)|})}{s_{\chi}} \chi(b^{-1}) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
(3)

Malle and Michel have shown that, since

() each element of \mathcal{B}_n corresponds to a distinct element of \mathcal{G}_n ,

2)
$$au(b)=\delta_{1b}$$
 for all $b\in {\mathcal B}_n$, and

3 \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z^{|Z(G_n)|}b^{-1}\right) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
(2)

This is equivalent to

$$\sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(\mathcal{G}_n))} \frac{\omega_{\chi}(z^{|Z(\mathcal{G}_n)|})}{s_{\chi}} \chi(b^{-1}) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
(3)

• We used GAP to prove Formula (3) for G_4 , G_6 and G_8 .

Malle and Michel have shown that, since

() each element of \mathcal{B}_n corresponds to a distinct element of \mathcal{G}_n ,

2)
$$au(b)=\delta_{1b}$$
 for all $b\in {\mathcal B}_n$, and

3 \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z^{|Z(G_n)|}b^{-1}\right) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
(2)

This is equivalent to

$$\sum_{\chi \in \operatorname{Irr}(\mathcal{KH}(\mathcal{G}_n))} \frac{\omega_{\chi}(z^{|Z(\mathcal{G}_n)|})}{s_{\chi}} \chi(b^{-1}) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
(3)

- We used GAP to prove Formula (3) for G_4 , G_6 and G_8 .
- We directly proved Formula (2) for G_5 , G_7 and G_{13} , by expressing $\tau \left(z^{|Z(G_n)|} b^{-1} \right)$ as a linear combination of entries of the matrix A.

Theorem (Boura–Chavli–C.–Karvounis)

The BMM symmetrising trace conjecture holds for G_4 , G_5 , G_6 , G_7 , G_8 .

Theorem (Boura–Chavli–C.–Karvounis)

The BMM symmetrising trace conjecture holds for G_4 , G_5 , G_6 , G_7 , G_8 .

Theorem (Boura–Chavli–C.)

The BMM symmetrising trace conjecture holds for G_{13} (and thus for all 2-reflection groups of rank 2).

Theorem (Boura–Chavli–C.–Karvounis)

The BMM symmetrising trace conjecture holds for G_4 , G_5 , G_6 , G_7 , G_8 .

Theorem (Boura–Chavli–C.)

The BMM symmetrising trace conjecture holds for G_{13} (and thus for all 2-reflection groups of rank 2).

Our C++ program has expressed gb_j as a linear combination of the elements of \mathcal{B}_n , for every generator g of $\mathcal{H}(G_n)$ and every $b_j \in \mathcal{B}_n$.

Theorem (Boura–Chavli–C.–Karvounis)

The BMM symmetrising trace conjecture holds for G_4 , G_5 , G_6 , G_7 , G_8 .

Theorem (Boura–Chavli–C.)

The BMM symmetrising trace conjecture holds for G_{13} (and thus for all 2-reflection groups of rank 2).

Our C++ program has expressed gb_j as a linear combination of the elements of \mathcal{B}_n , for every generator g of $\mathcal{H}(G_n)$ and every $b_j \in \mathcal{B}_n$. This in fact allows us to express any product of the generators, and thus any element, of $\mathcal{H}(G_n)$ as a linear combination of the elements of \mathcal{B}_n .