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The Broué–Malle–Michel symmetrising trace conjecture

Let W be a complex reflection group, and let H(W ) be the generic Hecke algebra
associated to W defined over a Laurent polynomial ring RW .

Let B be an RW -basis for H(W ). We have |B| = |W |.

Conjecture

There exists a linear map τ : H(W )→ RW that satisfies the following conditions:

1 τ is a symmetrising trace, that is, the matrix A := (τ(bibj)bi ,bj∈B) is
symmetric and invertible over RW .

2 When H(W ) specialises to the group algebra of W , τ becomes the
canonical symmetrising trace given by τ(w) = δ1w for all w ∈W .

3 τ satisfies an extra condition, which makes it unique.

It is known to hold for:

the real reflection groups by Bourbaki;

the groups G4, G12, G22, G24 by Malle–Michel (G4 also by Marin–Wagner).

the infinite series G (de, e, r) by Bremke–Malle & Malle–Mathas (?).
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The idea of the algorithm

We have |G4| = 24, |G5| = 72, |G6| = 48, |G7| = 144, |G8| = 96, |G13| = 96.

STEP 1: Take a basis Bn for each H(Gn) and define a linear map τ on H(Gn) by
setting τ(b) := δ1b for all b ∈ Bn. We must have 1 ∈ Bn and Bn = W when
H(W ) specialises to the group algebra of W . By construction, Bn satisfies the
second condition of the BMM symmetrising trace conjecture.

If h ∈ H(Gn), then τ(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of Bn.

STEP 2: Calculate the matrix A = (τ(bibj)bi ,bj∈Bn). Check whether A is
symmetric and invertible over RW . If yes, then τ satisfies the first condition of
the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for
H(Gn) for n = 4, . . . , 16. However, note that not any basis will work for the proof
of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify Bn accordingly.

STEP 3: Check that the extra third condition holds.
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The C++ algorithm

For any bi , bj ∈ Bn, our C++ program expresses bibj as a linear combination of the
elements of Bn. Then τ(bibj) is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

I1. The basis Bn.

I2. The generating relations of the Hecke algebra H(Gn).

I3. The “special cases”: these are some equalities computed by hand which
express a given element of H(Gn) as a sum of other elements in H(Gn).

The case of G4

We have B4 =

{
1, s, s2, t2, t, t2s, ts, t2s2, ts2, st2, st, st2s, sts, st2s2, sts2,
s2t2, s2t, s2t2s, s2ts, s2t2s2, s2ts2, ststst, stststs, stststs2

}
.

Running the C++ program takes about 1 hour on an Intel Core i5 CPU.
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The SAGE algorithm

Our SAGE program produces the matrix A row by row, using the distinctive
pattern of the basis Bn: there exists a set En with 1 ∈ En such that

Bn = {zke | e ∈ En, k = 0, 1, . . . , |Z (Gn)| − 1} ,

where z ∈ Z (H(Gn)) is the image of a generator of the centre of the
corresponding braid group.

We have En ↔ Gn/Z (Gn) ∼=
{

A4 for n = 5, 6, 7;
S4 for n = 8, 13.

The curious case of G7

3 elements have to be replaced!

The inputs of the SAGE algorithm are the coefficients of the following elements
when written as linear combinations of the elements of Bn:

I1. gbj for all bj ∈ Bn, where g runs over the generators of H(Gn).

I2. z |Z(Gn)| = z · z |Z(Gn)|−1.
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The case of G5

H(G5) =
〈
s, t

∣∣ stst = tsts, s3 = as2 + bs + c , t3 = dt2 + et + f
〉
.

E5 =
{

1, s, s2, t, t2, st, s2t, st2, s2t2, t−1s, t−1st, t−1st2
}

= {b1, b2 . . . , b12}.

z = stst.

B5 = {zkbm |m = 1, 2, . . . , 12, k = 0, 1, . . . , 5}.

We set b12k+m := zkbm. We observe that we have:

b12k+2 = b12k+1 · s, b12k+8 = b12k+6 · t,

b12k+3 = b12k+2 · s, b12k+9 = b12k+7 · t,

b12k+4 = b12k+1 · t, b12k+10 = f −1(b12k+5 − db12k+4 − eb12k+1) · s,

b12k+5 = b12k+4 · t, b12k+11 = b12k+10 · t,

b12k+6 = b12k+2 · t, b12k+12 = b12k+11 · t.

b12k+7 = b12k+3 · t
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The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑
` λ

s
j,`b`, tbj =

∑
` λ

t
j,`b` and z6 =

∑
` µ`b`.

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑
` λ

t
j,`τ(b12k+1b`).

τ(b12k+10bj) = f −1
∑
` λ

s
j,`(τ(b12k+5b`)− dτ(b12k+4b`)− eτ(b12k+1b`)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
`

µ`τ(b12k+j−72 b`).



The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑
` λ

s
j,`b`, tbj =

∑
` λ

t
j,`b` and z6 =

∑
` µ`b`.

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑
` λ

t
j,`τ(b12k+1b`).

τ(b12k+10bj) = f −1
∑
` λ

s
j,`(τ(b12k+5b`)− dτ(b12k+4b`)− eτ(b12k+1b`)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
`

µ`τ(b12k+j−72 b`).



The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑
` λ

s
j,`b`, tbj =

∑
` λ

t
j,`b` and z6 =

∑
` µ`b`.

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑
` λ

t
j,`τ(b12k+1b`).

τ(b12k+10bj) = f −1
∑
` λ

s
j,`(τ(b12k+5b`)− dτ(b12k+4b`)− eτ(b12k+1b`)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
`

µ`τ(b12k+j−72 b`).



The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑
` λ

s
j,`b`, tbj =

∑
` λ

t
j,`b` and z6 =

∑
` µ`b`.

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑
` λ

t
j,`τ(b12k+1b`).

τ(b12k+10bj) = f −1
∑
` λ

s
j,`(τ(b12k+5b`)− dτ(b12k+4b`)− eτ(b12k+1b`)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
`

µ`τ(b12k+j−72 b`).



The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑
` λ

s
j,`b`, tbj =

∑
` λ

t
j,`b` and z6 =

∑
` µ`b`.

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑
` λ

t
j,`τ(b12k+1b`).

τ(b12k+10bj) = f −1
∑
` λ

s
j,`(τ(b12k+5b`)− dτ(b12k+4b`)− eτ(b12k+1b`)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
`

µ`τ(b12k+j−72 b`).



The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑
` λ

s
j,`b`, tbj =

∑
` λ

t
j,`b` and z6 =

∑
` µ`b`.

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑
` λ

t
j,`τ(b12k+1b`).

τ(b12k+10bj) = f −1
∑
` λ

s
j,`(τ(b12k+5b`)− dτ(b12k+4b`)− eτ(b12k+1b`)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
`

µ`τ(b12k+j−72 b`).



The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑
` λ

s
j,`b`, tbj =

∑
` λ

t
j,`b` and z6 =

∑
` µ`b`.

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑
` λ

t
j,`τ(b12k+1b`).

τ(b12k+10bj) = f −1
∑
` λ

s
j,`(τ(b12k+5b`)− dτ(b12k+4b`)− eτ(b12k+1b`)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
`

µ`τ(b12k+j−72 b`).



The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑
` λ

s
j,`b`, tbj =

∑
` λ

t
j,`b` and z6 =

∑
` µ`b`.

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑
` λ

t
j,`τ(b12k+1b`).

τ(b12k+10bj) = f −1
∑
` λ

s
j,`(τ(b12k+5b`)− dτ(b12k+4b`)− eτ(b12k+1b`)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
`

µ`τ(b12k+j−72 b`).



The GAP algorithm

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle
has shown that there exists a field K over which H(W ) is split semisimple.

Then

τ =
∑

χ∈Irr(KH(W ))

1

sχ
χ (1)

where sχ ∈ K denotes the Schur element of KH(W ) associated with χ.

Schur elements have been completely determined by Malle for all non-real
exceptional complex reflection groups.

STEP 1: Define τ̃ as the RHS of (1).

STEP 2: Establish that τ̃ = τ by showing that τ̃(b) = δ1b for all b ∈ Bn.

STEP 3: Calculate the entries of A using τ̃ . We already know that A is
symmetric, so we only need to calculate the entries in and above the diagonal.

Our program worked for G4 and G6. It produced A for G8, but could not calculate
det(A). It could not even establish STEP 2 for G5 and G7.
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STEP 1: Define τ̃ as the RHS of (1).

STEP 2: Establish that τ̃ = τ by showing that τ̃(b) = δ1b for all b ∈ Bn.

STEP 3: Calculate the entries of A using τ̃ . We already know that A is
symmetric, so we only need to calculate the entries in and above the diagonal.

Our program worked for G4 and G6. It produced A for G8, but could not calculate
det(A). It could not even establish STEP 2 for G5 and G7.



The extra condition

Malle and Michel have shown that, since

1 each element of Bn corresponds to a distinct element of Gn,

2 τ(b) = δ1b for all b ∈ Bn, and

3 Bn is a basis of H(Gn) as an RGn -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

τ
(
z |Z(Gn)|b−1

)
= 0 for all b ∈ Bn \ {1}. (2)

This is equivalent to∑
χ∈Irr(KH(Gn))

ωχ(z |Z(Gn)|)

sχ
χ(b−1) = 0 for all b ∈ Bn \ {1}. (3)

We used GAP to prove Formula (3) for G4, G6 and G8.

We directly proved Formula (2) for G5, G7 and G13, by expressing
τ
(
z |Z(Gn)|b−1

)
as a linear combination of entries of the matrix A.
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The main results

Theorem (Boura–Chavli–C.–Karvounis)

The BMM symmetrising trace conjecture holds for G4,G5,G6,G7,G8.

Theorem (Boura–Chavli–C.)

The BMM symmetrising trace conjecture holds for G13 (and thus for all
2-reflection groups of rank 2).

Our C++ program has expressed gbj as a linear combination of the elements of
Bn, for every generator g of H(Gn) and every bj ∈ Bn. This in fact allows us to
express any product of the generators, and thus any element, of H(Gn) as a linear
combination of the elements of Bn.
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